Table of Contents
Lab Grown Diamonds in Dallas, Texas
Lab grown diamonds (also called lab-created) are more ethical, beautiful, and affordable than anything we will mine out of the earth. By creating a lab created diamond we are replicating the earth’s natural process by crystallizing carbon into brilliant diamonds that are chemically, optically, and physically identical to earth-mined diamonds, but comepriced up to 40% less, and free of any environmental or humanitarian concerns.How Are Lab-Created Diamonds Made in Dallas?
Each laboratory-created diamond is grown by placing a diamond ‘seed’ into a chamber of heat and pressure. This chamber mimics the natural growing process. Crystallization occurs allowing the lab-grown diamond to mature within six to ten weeks. It is then cut, polished, and graded by the same world-renowned labs that certify earth-mined diamonds. The two following techniques are most commonly used by laboratories. Suggested Post: Loose Diamonds In DallasCHEMICAL VAPOR DEPOSITION (CVD)
Chemical Vapor Deposition, or CVD, is a process used to create gem-grade diamonds as well as optics and semiconductors. The CVD process uses ultra-pure carbon-rich gasses in a controlled chamber. Carbon-based gasses, such as methane, are heated until they break apart allowing the carbon atoms within the gas to separate. These tiny carbon atoms fall onto a diamond substrate and build up layers resulting in a rough diamond crystal. This process takes between six to ten weeks and yields gem-grade Type IIa diamonds. In recent years, CVD research has gained popularity, and now modified versions of CVD are being used. These processes differ in the means by which chemical reactions are initiated. Some of these variations include:-
- Low-pressure CVD (LPCVD)
-
- Ultrahigh vacuum CVD (UHVCVD)
-
- Plasma-enhanced chemical vapor deposition (PECVD)
- Microwave Plasma Vapor Deposition (MPCVD)

-
- Bars Press – The Bars Press is the most effective tool used for producing gem-quality diamonds. It uses a combination of inner and outer anvils to apply hydraulic pressure to the growth cell.
-
- Belt Press – The Belt Press is the founding technology behind growing diamonds. It can be large and produce several diamonds in only one cycle by using two large anvils that press together to create the necessary pressure. It is capable of producing gem-quality diamonds but is most commonly used to produce diamonds and diamond powder for industrial purposes.
- Cubic Press – A Cubic Press can be large in size and uses six separate anvils to create the necessary pressure for diamond crystal growth. It is also used to create diamond powder for industrial purposes.
Lab Grown Diamond Benefits
UNMATCHED BEAUTY
Frisco Engagement Rings collection of lab-created diamonds are available up to IF in clarity, D in color, Ideal in cut, and up to 10 carats in size. They come in a variety of shapes including round, rose, emerald, cushion, oval, oval rose, heart, princess, trillion, and radiant. Colors include white, yellow, blue, pink, and green.UNRIVALED QUALITY
Unlike other retailers, every Frisco Engagement Rings lab-created diamond is Type IIa, the purest form of a diamond. They are harder and more brilliant than Type Ia diamonds. Only 2% of earth-mined diamonds are of this quality. Furthermore, each diamond is graded and certified by the same leading independent gemological labs that are used to grade earth-mined diamonds.UNBEATABLE VALUE
Lab-created diamonds cost up to 40% less than their mined diamond equivalents. Buyers beware: keep an eye out for “grown diamonds” sold for a few hundred dollars per carat. If the deal seems too good to be true, it probably is. Only diamond simulants fall in this price range.GUARANTEED CONFLICT-FREE
Every lab-created diamond from Frisco Engagement Rings is guaranteed conflict-free and sourced from first-world countries where they are treated and cut in a controlled lab environment. Unlike earth-mined diamonds, our man-made diamonds are created without negatively harming native communities, society, or the Earth. According to the 2014 Frost & Sullivan report, “lab-grown diamonds are seven times less impactful to the environment than mined diamonds, use significantly fewer resources, and emit a fraction of the air pollution.” We’ll let the numbers speak for themselves: Earth-Mined The mining of earth-mined diamonds results in hundreds of hectares of soil being disturbed (approximately 0.00091 hectares per carat), excessive carbon emissions, and other greenhouse gas emissions that lead to deteriorated air quality and pollution. Additionally, approximately 126 gallons of water are used for every 1.0-carat diamond mining. laboratory-grown The amount of land disturbed in the creation of a laboratory-grown diamond equates to 0.00000071 hectares per carat. The use of water is also minimal, with approximately 18.5 liters used in the creation of a 1.0-carat laboratory-grown diamond. Source: Frost & Sullivan – Environmental Impact AnalysisPROPERTIES | MINED | GROWN |
---|---|---|
Guaranteed Conflict-Free | No | Yes |
Hardness (MOHS) | 10 | 10 |
SP3 Carbon Diamond Bonds (%) | 100% | 100% |
Internal Crystal Structure | Face-Centered Cubic | Face-Centered Cubic |
Hardness Comparable | 2.42 | 2.42 |
Color | Various Grades | K to D grades |
Price | $$$$$ | $$$ |
Cut | Poor to Ideal | Very Good to Ideal |
What Colors Are Available?
1. WHITE LAB-CREATED DIAMONDS
A pure carbon diamond with no impurities will grade as a colorless diamond. However, the majority of both mined and lab-created diamonds contain impurities, most of which are nitrogen. The nitrogen atoms within the diamond lattice create the yellow tint. In cases of fancy colored diamonds, a pure yellow color is created. Nearly all diamonds, both mined and lab-created, start out as yellow diamonds. Over the span of millions of years and exposure to pressure and heat, mined diamonds split the nitrogen atoms within their lattice rendering the nitrogen atom’s ability to produce yellow light. The splitting of the nitrogen atoms is what gives the diamond its ability to shine white. In the case of lab-created diamonds, we don’t have millions of years to convert a yellow diamond to white, however, the ability to grow the diamond with little or no nitrogen produces the same result. Growth Time Growing a white diamond requires an incredibly controlled environment. The heat and pressure must remain consistent throughout the entire growing process. Any fluctuation or change within the growth cell can cause the diamond to stop growing or can create heavy inclusions. Extracting the nitrogen and boron from the growth cell to remove the color from the diamond lattice also causes the diamond to grow slower. White diamonds typically take up to two weeks or longer to grow a 1.0 carat stone. It is the extended growth time, the need to extract certain elements from the growth cell, and the demand to keep the heat and pressure consistent that make growing a white diamond difficult, thus contributing to their limited availability. Price Comparison Unlike earth-mined diamonds, lab-created diamonds are very limited in supply. The process used to create white diamonds is also the most time-consuming and temperamental. Given that white earth-mined diamonds are in abundance and white lab-created are in limited supply, the cost ends up being very comparable. A typical 1.0 carat lab-created diamond will range from $5,600 to $10,000. White lab-created diamonds are priced identically to mined diamonds using the cut, carat size, color, and clarity to determine their individual worth. Available Shapes White diamonds yield a square-ish rough. This allows the most popular shapes to be produced: round, princess, Asscher, cushion, and emerald. These shapes complement the diamond rough and in return give the highest yields. Elongated shapes like oval, marquise, and pear typically aren’t produced because of their need for a more elongated rough. The Cut All lab-created white diamonds offered by Frisco Engagement Rings are hand-cut. Every diamond comes with individual grading from either the IGI or GCal and shows their cut grade on the grading report. Every diamond is cut to maximize brilliance and color. The Clarity The clarity of a lab-created white diamond is evaluated the same as an earth-mined diamond, typically ranging from IF to SI2. All grading is done by either IGI or GCal and is included with every Lab-Created Diamond offered by Frisco Engagement Rings.2. YELLOW LAB-CREATED DIAMONDS
Frisco Engagement Rings yellow lab-created diamonds are optically, chemically, and physically identical to yellow earth-mined diamonds, but are offered free of conflict and on average 10% of the cost. They are available in a color range from fancy yellow to fancy vivid yellow, in sizes up to 2.0 carats and a variety of shapes. Both mined and lab-created yellow diamonds get their color from nitrogen. While diamonds are made up of carbon, impurities within the stone exist. It is the introduction of these impurities, in this case, nitrogen, that will ultimately give the diamond its yellow color. As a diamond grows, nitrogen atoms will sometimes replace a carbon atom within the diamond’s lattice structure. Once light enters the diamond, the nitrogen will reflect back yellow light. By controlling the amount of nitrogen during the diamond’s growing process, the color of the finished diamond can be selected. The more nitrogen in a diamond the yellower it will be. Too much nitrogen and the diamond will start to appear brown. “Getters” are used during the growing process to capture excess nitrogen within the growth cell. By using getters, we can grow yellow diamonds with the most desirable gem-quality colors. Many lab-created diamonds are offered in yellow and orange/yellow colors. A lab-created diamond gets its orange color from the solvents used during the growing process. These diamonds are grown in a metal molten solution. The orange comes from solvent trapped in the diamond lattice itself during the growing cycle. These solvents, combined with the nitrogen trapped in the diamond’s lattice structure, give the diamond its orange/yellow color. Deciding on which color of yellow or orange/yellow diamond to buy is purely a personal choice. The ranges we provide fall between the most commonly grown and purchased colors. Growth Time It takes five to six days for one cycle in the growth machine to produce enough rough to cut a 1.0 to 2.0 carat finished yellow diamond. The nitrogen left in during the growing process that gives a yellow diamond its color actually helps the diamond grow faster than any other color. Price Comparison Fancy yellow-colored diamonds are fairly rare in nature. Yellow lab-created diamonds cost about 75% less than their mined equivalents. Lab-created yellow diamonds are the most abundant because they are the easiest of the colors to grow. As a result, they are also the least expensive. Lab-created yellow diamonds range in price from $3,000 to $5,000 per carat. Earth-mined yellow diamonds can cost anywhere from $10,000 to $50,000. Available Shapes The majority of yellow diamond roughs grow in a truncated octahedral shape. Square shapes, like radiant, princess, cushion, Asscher, and emerald, are typically used to yield the most from the rough. Round-shaped diamonds are also available. Due to the square nature of the yellow rough, elongated shapes like pear, oval, and marquise are not typically produced.3. BLUE LAB-CREATED DIAMONDS
Blue lab-created diamonds are optically, chemically, and physically identical to blue earth-mined diamonds and are offered free of conflict and about 10% of the cost. They are typically offered in sizes smaller than 1.50 carats and come in a color range of fancy light blue to fancy intense blue. Both mined and lab-created blue diamonds get their color from boron. While diamonds are made up of carbon, impurities within the stone exist. It is the introduction of these impurities, in this case, boron, that will ultimately give the diamond its blue color. As a diamond grows, controlled amounts of boron are introduced into the growth cell which then becomes trapped in the diamond’s lattice structure. Controlling the amount of boron in the growth cell allows the finished color to also be controlled. Once light enters the diamond, the boron will reflect back blue light. Growth Time It takes seven to ten days for one cycle in the growth machine to produce enough rough for a finished blue diamond up to 1.0 carat in size. The boron introduced during the growing process that gives a blue diamond its color actually helps the diamond grow quicker than a white diamond. Nonetheless, it will still grow slower than a yellow diamond. Price Comparison Mined blue diamonds are incredibly rare in nature and can sell for anywhere between $200,000 to $500,000 per carat. A lab-created blue diamond costs about 10% of what a mined diamond costs. Most blue lab-created diamonds range from $7,000 to $12,000 per carat. Blue lab-created diamonds in fancy blue colors are the most expensive out of all the fancy colored diamonds due to the time and care needed to achieve the most desirable colors. Available Shapes The majority of blue diamond roughs grow in a Hexa-cubic shape. Round and cut corner shapes like a radiant, cushion, Asscher, and emerald are typically used to yield the most from the rough. Due to the Hexa-cubic nature of the blue rough, princess cuts and elongated shapes like pear, oval, and marquise are not typically produced.4. PINK LAB-CREATED DIAMONDS
Frisco Engagement Rings pink lab-created diamonds are optically, chemically, and physically identical to pink earth-mined diamonds but are offered free of conflict and about 5% of the cost. They are typically readily available in sizes below 2.0 carats and range in color from fancy pink to fancy deep pink. Unlike white, blue and yellow lab-created diamonds, which get their color during the growing process, pink diamonds get their color from a post-growth treatment process referred to as irradiation and annealing. Certain lighter yellow diamonds are most commonly used to create pinks. By showering the diamond with electrons and neutrons (irradiation), we can alter the diamond’s crystal lattice structure and create a new colored center. During the second step, annealing, the stone is heated to help smooth out the alterations created from the irradiation and help achieve the diamond’s finished color. Additional colors like purple, red, and green are available and are produced post-treatment using the same process as pinks. The color created during the treatment process is permanent and secure under normal wear and tear conditions. In the event of setting, repairing, or servicing a color-treated diamond, care should be taken when being exposed to high temperatures like a jeweler’s torch. Exposure to extreme temperatures may cause color discrepancies Price Comparison Mined pink diamonds are the rarest in the world. The majority of pink diamonds come from Australia. The extremely limited availability puts the cost of these pink diamonds between $56,000 to $150,000 per carat. A treated pink lab-created diamond costs between $5,000 and $10,000 per carat. The price per carat weighs heavily on the color of the diamond itself. On average, a pink lab-created diamond is about 5% the cost of a pink mined diamond. Available Shapes The large majority of lab-created pink diamonds will be finished or shaped in the same manner as yellow-grown diamonds. A lab-created pink diamond starts as a yellow grown diamond. A grown yellow diamond’s rough has a truncated octahedral shape. Square shapes like radiant, princess, cushion, Asscher, and emerald are typically used to yield the most from the rough. Round shape diamonds are also available. Due to the square nature of the pink rough, elongated shapes like pear, oval, and marquise are not typically produced. The Clarity The clarity of a pink diamond is dependent upon its color. Pink colors that are fuller in saturation or have more of the pink color in them will allow for a lower clarity while a soft or light pink may require higher clarity. In any case, as long as the diamond’s inclusions are not visible to the naked eye (eye clean), you should be safe. Clarity will affect the price, so in many cases, buying a diamond that is eye clean over one with a higher clarity grade will not only save you money, but it will look just as good when being viewed in normal conditions.Lab Grown Diamonds VS Natural Diamonds
The most appealing characteristic of a diamond is its clear and sparkling display. While the most stunning diamonds have been cultivating for billions of years to gain their spectacular appearance, a new method of lab-grown diamonds can be an ideal option to consider. These high-quality stones can be just as spectacular as naturally grown diamonds but can be formed in three months and tend to have a lower price tag. But what should you be considering when deciding between lab grown diamonds VS natural diamonds? Read on to know the differences.
1. What are lab grown diamonds and natural diamonds?
Lab-grown diamonds are in simple terms, engineered or cultured diamonds. Unlike natural diamonds which are found at least 140 kilometers in the Earth’s mantle and are formed from high temperatures and pressure, lab diamonds are grown in a controlled environment. These diamonds are formed using the latest technologies in laboratories which duplicate the environment and conditions of how natural diamonds are formed. Natural diamonds tend to take over 1 billion years to grow from carbon minerals whereas lab-grown diamonds can be grown in a significantly shorter amount of time. These man-made diamonds are actually carbon atoms that are arranged to resemble the same characteristics of a diamond’s structure.2. Is it easy to tell the difference between the two?
No. In most cases, it is incredibly difficult to tell the difference between lab diamonds and natural diamonds. They will have almost identical physical properties, making them look strikingly similar to one another.3. So, why are lab diamonds less expensive?
While lab-grown diamonds vs natural diamonds provide the same quality and brilliance, lab-grown diamonds can cost up to 30% less than natural diamonds simply because lab diamonds are easier to come by. Natural diamonds are still rare stones, while lab diamonds can offer a more convenient and budget-friendly alternative without affecting the beauty or durability. One thing to note is there is a major difference between these lab-grown diamonds and diamond simulants. Cubic zirconia and moissanite will not give off the same brilliance as natural diamond or lab-grown diamonds, since they are not made from carbon crystals. You will find that diamond simulants will have a much lower price tag than lab-grown diamonds and will also be of lower quality. Related Post: Why Are Lab-Grown Diamonds Less Expensive Than Natural Diamonds?- Find The Real Reasons4. Why should you buy a lab grown diamond?
The price can be a major factor but there are other reasons you should choose a lab-grown diamond over a natural diamond. Most natural diamonds are mined and sold while causing various conflicts in other countries, especially in western Africa, and this is why they get the name “Blood Diamond” or “Conflict Diamond”. So many buyers will have a strong opinion on buying natural diamonds based on their own moral or ethical beliefs.5. Are there any downfalls to buying a lab grown diamond?
When comparing lab-grown diamonds to natural diamonds, the downfall is not in their appearance. You will get similar characteristics in hardness, color, brilliance, and overall quality from a lab diamond as you will from a natural diamond. The only factor that many look at as a negative is simply the technology and equipment used to create these lab-grown diamonds: There is less of a romantic appeal to have a diamond created in just a few months over a couple of million years.What People Say About Lab Grown Diamonds vs. Natural Diamonds?
Still unsure of whether to go with a lab-grown diamond or a natural diamond? Here is what other people have to say about the striking similarities between the two.-
- There was no question about going with a lab-grown diamond for my engagement ring. I felt much better knowing the diamond I was showing off can from a lab in Minnesota instead of from a mine where the person who retrieved the diamond was only being paid pennies to mine it.